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Abstract - The chirp scaling SAR processing algorithm is
both accurate and eflicient. Successful implementation re-
quires proper sclection of the interval of output samples,
which is a function of the chirp interval, signal sampling
rate, and signal bandavidth. Analysis indicates t hat for both
airborn e and spacebornie SAR applications in the slant range
domain a hnear chirp scaling is suffucient. To perform non-
lincar interpolat ion process such as to output g round range
SAR images, one canuse a nonlinecar chirp scaling interpo-
later presentedinthis paper.
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CHIRP SCALING INTERPOLATOR

Chirp scaling interpolation[1] is a process that yvields almost
perfect interpolation result . Although some people refrain
from calling it aninterpolator for its lack of’ resemblance to
anyinterpolator, chirp scaling however functions like an in-
terpolator. Strictly speaking, it onlv deals with input sign al
with coustant sample spacing and ‘it only generates output
signal with constant sample spacing.  Inanothier word, it
only rescales the mput signal in the horizontal axis.

The chirp scaling process can be described mathematically
as follows. Let S7(0) be the input and S;(1) be the output
of a chirp scaling interpolator. Sa2(¢) can be written as

So(t) = (LS @pad)) - p2(t) ) Copslt) ) - pa(t) )

where ¢ stands for convolution, and py(4). p2(). p3(t), and
pa(1) arc the chirp signals involved in this scaling process.
I'urthermore, we express these chirps in the following form:
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Fxpressedin integral form,S>(?) is givenby
Sa(1) = //5'1(1‘ 1= (m)pe (- m2)ps(72) drydry pa(i)
Let T]’ = 711+ 72, the above equation is then given by
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Since the secondintegral is a delta function, So(1) is thercfore
given by
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The delta function implies that when T; = = (b)), the
result of the above integral can be shown to he
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This proves that the output signal So(1) is the mput signal
S1(t) scaled by a factor of (by - b2)/by along the time axis.
If the scaling factor is a, then by is given by by{a — 1),

To miplement this interpolator in discrete form, several fac-
tors must be considered due to the hmited bandwidth and
finite sampling {requency. IMirst, in order to preserve infor-
mation, onc should not increase the sampling spacing to a
point below the Nyquist rate of Sy(). Therefore, if S)(1)
is already sampled at the Nyquist rate, one should use the
chirp scaling interpolator only to reduce its sampling spac-
ing. Second, the bandwidth of py(?) should be no less than
the bandwidth of Si(1) and no greater than the sampling
frequency of Sy(f). In a design to optimize the length of
the vahid interval of S»(1), the bandwidth of pi(1) is set to
be the bandwidth of Si(t). Third, the time intervals for
p1(1), p2(1), p3(1), and p4(t) should be:

Ty = B/by],  Ty= T4 T
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where 13 is the bandwidth of Sy(1), fs is the sampling fre-
quency of Sp(), Ti, s the time duration of Sy(1). and Ty
is the time duration of S>(1). It can be proven (Appendix A)
that to prevent degradation to signal resolution, Tgy must
be bounded by
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where a == (6, + 02)/b; and 4 = f¢/13. This indicates that
the time interval of the valid outputsignal is a function of
the time interval of thefirst chirp used inthisinterpolation
process. Yor 4 = 1.18, the ratio between 1,y and Ty as  a
function of o is depicted in IFigure 1. 1t should be noted that
the output sampling interval is given by o/ fs.

For a band-limited system, the weight function of an ideal
mterpolator must follow a sina/a type function. The equiv-
alent weight function of a chirp scaling interpolator is of a
slightly different form. The difference in their far sidelobes
cause a very slight difference in the magnitude and phase of
the output signal. To accurately analyze the phase fidelity
performance, these subtle differences cannot be ignored.

ATRBORNE CHIRP SCALING PROCES SING

If the range histories of all the targets in a two dimensional
datablock areidentical, a 2-1) fast Fourier correlation can
directly be applied to achieve both range and azimuth corre-
lation shimultanecously. To accomplish this, we perform a 2-D
FIMT (an azimuth 17T followed by a range F'I'T) for the
SAR raw data, performa 2-D I 011 the point-target 2-1)
impulse response, multiply the first spectrum by the complex
conjugate of thesecondspectrurn, thenperform a 2-1) inverse
1P For real SAR data, the range history of targets varies
inthe cross-track dimension. Therefore, the image gener-
ated from the above algorithm will be focused only for a
very shallow slanit range interval in which the range histories
match that of the reference function. Above and below that
interval, resulting images are smearedinboththe range and
azimuth directions. The smearing along azimuth is mainly
due to the mismatch of the focusing parameters I~etl’cell the
phase function of the target impulse response and that of the
reference response. The smearing along range is due to the
mismatch of therange curvatures betweenthe two responses.

Duc to the mismatches in range curvature and focusing pa-
rameters, the impulse responses for targets in the cross-track
direction when presented in the range-Doppler domain typ-
ically look like that given in IMigure 2. In this figure, the
straight horizontal line at the center is the energy trace of
the impulse response corresponding to the matched targets.
The phasc of cach sample along this line is well compensated.
Above and below this line, the target spectrum follows a
curve, of which the curvature becomes greater for targets
further away from the straight line. These curves accounts
for the residual curvatures that are left uncompensated by
the reference function. As shown in [2], the range spacing be-
tween any two adjacent curves is given by 1/y/1- (Af/2v)?
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which depends only on the Doppler frequency f. The phase
of cachsample along cach curve follows that of a I'Mfunction
with a small time-bandwidth product. These phase functions
accoun it for the mis match between the focusing parameters.

A simple fix to the 2-1) spectrumn describe above is to extract
all 1-D azimuth spectra from the curves in the range-Doppler
data shown in Jigure 2 and to multiply cach extracted spec-
trum with a 1-1) phasce function to compensate for the resid-
ual phase error. After the range-Doppler spectrum is fixed,
a well focused mage can be obtained by applying an inverse
azimuth FI7T to this data. 1t is obvious that the chirp scaling
interpolator can be applied to extract the desired spectra. I
fact, the algorithm reported in [2,3] is to combine the sim-
plified 2-1) processing with the chirp scaling process.

In a combined process, we may consider that the chirp scal-
img process 1s to be accomplished by four sets of chirps,
pi(7,w), pa(r,w), pa(7,w), and pg(7.w), where 7 is the time
coordinate of range and w is the angular frequency in az-
imuth. Since most of the radar employ a linear M chirp,
the process of convolving the signal with Pj(r,w) can be
avoided. In addition, the chirp rate bj(w) of I’y is inher-
ently determined by the radar pulse as A in the (7,1) do-
main and K'(w) in the (r,w) domain due to the cffect of
the azimuth impulse response [2]. Let the range scaling
factor be a(w), the chirp rate of I, P35, and I’y in (7,w)
are therefore given by (a{w) - NN (w), a(w)h'(w), and
a(w)(a(w) - K (w). However, I’3 1s actually implemented
in (w,,w) domain, therefore, its corresponding chirp rate is
given in the form of reciprocal, 1/(a{w)'). The removal of
"7 in N is due to the multiplication of the 2-D reference
spectrum which removes the effect of the azimuth impulse
response on py.

‘1’0 be further noted is that the time origin for applying po
must follow the range migration curve of the reference target.
Therefore, P2(7, w) is given by

po(7, w) = exp{»—j?ﬂg-ﬂ—(f) -j )'l\--(f-)(T - Tee f(w))g
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In applying ps to the SAR data, compensation has been
made to the range migration of the reference target, the time
origin for py is therefore given by a constant of (2r,.7)/c.

AIRBORNE SAR SCALE FACTOR

To derive the scale factor used in SAR processing, one need
to dertve the slant range history as a function of the mini-
mum slant range and the Doppler frequency. According to
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the geometry of an aircraft SAR as shown i Iigure 3, the
slant range at time ¢ is given by r(1,7¢) = \/;6 + v%12, where
ro 1s the minimuim slant range and v is the aircraft velocity.
r(t,710) can also be expressed by the squint angle 0

r(1,70) = 70/ sin 0,

Since the Doppler {requency at squint angle 0, is given by
[ = 2vcost,. The slant range history as a function of Doppler]
is, therefore, given by

110
2(,20) = rgfed - (.3*":]:)’

The scaling factor is then given by

foor MO gyl (2
(1,»0 {7t I S

SPACEBORNE SAR SCALE FACTOR

For a spacehorne SAR with a narrow beamwidth, the slant
range history can be formulated by its Doppler frequency fy
and frequency rate f,

A A 5
r(t,10) = 1o — 3fd(7‘0)’ - jl"fr(rﬂ)""

Since the Doppler frequency [ and time are related by f =
Ja(ro) 4 ¢+ fi(ro), the slant range function can be rewritten
as

. /\ 2 - 2 I
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Assuming a circular polarorbit over the equator of a spher-
ical surface, the fg(rg)and fy(rg) can be expressed by

2VesinO
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where A is the spaceeraft acceleration, Ve is the carth ro-
tation velocity, 0, and 0; arc the look angle and incidence
angle, respectively. It canbe shown that
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where R, 1s the radius of carth and 2, is the radius of the
orbit. Let rg = Ityey + 71, the scaling factor can be obtained

as

A Taylor’sseries expansionof this scale factor canbemade to
check the linearity of thescale factor as afunctionof ry. The
numerical results indicate that the second order coeflicient
is too smallto be considered.

NONLINEA R CHIRP SC ALING INTERPOLATOR

The existing chirp scaling processing can only be applied to
SAR processing in the slant range domain due to its con-
straint of lincarity. 1 lowever, for most S. Al applications, it
is desirable to present the SAR images in the grou nd range.
Insuch cases, post interpolation is still required to convert
slant range image into ground range image. In the follow-
ing analysis, it will show that the chirp scaling interpolator
can be modified to allow it ha ndle nonlinear interpolation
p roblems. By combining this nonlincar chirp scaling inter-
polator 1nto SAR correlation process, gronnd range images
can be obtained with both high geometric accuracy and high
processing cfliciency.

Lets consider an interpolator that generates samples having
sample spacing being a linear function of time. Again, using
the sarne mathematical process as describedin (1 ). However,
the waveforis of py(¢) and p3(1) are chosen as {ollows:

o1
pa(t) = exp{- j2net®}, pa() = exp{]?né‘—'—iz}

It can be shiown that
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where 8'(7) = [exp{- j2n(r7y 4 3cl73 — er3)}dry. Tor c
being small enough 6'(7) can be approximated by the delta

function, therefore, the following result is obtained.
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By letting pg(1) = (\xp{j‘;’.wl-f_,l(fb{li)?}, we have

Sa(l = Syl =) = Syt +4 pt?),




Inimplementation, several factors must be considered. The
first is that aliasing effect should not be observed for any
valid outputsamples. The second is that the third and sec-
ond order phase terms in § should not change the resolution
and pixel location of &' by morethan a set of prescribed up-
per bounds. To prevent aliasing, the time interval must be
bounded according to
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To maintain a resolution broadening being 1css than 10% of
the 3-dB width, the coefficient ¢ must be bounded by [4]

rgr g 2

! 2
r) 9 . N P A)
27 3¢( 5 ) ) <1 .82
where This the interval of P1 (f). To maintain location offset
being less than 10% of the 3-dB3 width, the cocflicient ¢ must
be bounded by [4]

o 3
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27rc~7 < 0.58

In a nonlincar interpolator design, the time bandwidth prod-
uct, TBP, for p1(?) is determined first, the time interval 7}
is then given by TBP/ B, where I3 is the bandwidth of the
input signal. Therefore, by is given by B3/7y, ¢ is given by
pby, and T is obtained from aliasing constraint equation.

CONCILUSION

The previously reported chirp scaling SAR processing algo-
rithin incorperated a lincar chirp scaling inter polation pro-
cess. Detailed analysis on the interval of valid output sam-
ples are given in this paper. The scale factor analysisindi-
cates that this algorithm is suitable for both airborne and
spacchorne SAR applications in the slant range domain. To
output ground range SAR images, a nonlinearinterpolator
must be used, This paper finally presents an eflicient and
accurate nonlinear chirp scaling interpolator as a candidate
for solving that problem.
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APPENDIX A

Let the input signal be given in the interval of [0, T,]. The
input signal can be considered as the superposition of Ty, - fo
delta functions with its amplitude given by the amplitude
of the signal at cach time sample.  After convolving with
the first chirp py(t), cach delta function becomes a chirp
with a frequency interval of [0, 13]. After multiplied by the
sccond chirp po(1), each chirp function becomes a chirp with
a frequency range of [f1(1), f1(1) 4 a B3], where fi(1) is given
by the product of the time of the sample in Sy and the chirp
rate by 4 by,

To prevent aliasing, fi(1) must be greater than or equal to
0 and fi(1) 4 o3 must be less than or equal to f,. et #7 be
the time such that fi(41) = 0 and ¢5 be the time such that
f1(te) - a3 = f, then T,y is given by 2o - 1 or '

T Js — a3 Ry T
out — l[)_)l - )(}‘ _ ]' 1

Since 1oyt 1s also bounded by 14, therefore

% . L
Vour = I\']m{l%»_‘].] Iy, T
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Figure 1. Ratio between thevalid output interval
to the interval of the chirp
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Figure 2. The energy trace of the impulse response spectra
from the simple 2-D fast Fourier correlation
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Figure 3. Airborne SAR Geometry



